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Introduction 

Thromboxane A synthase (TXAS) is the enzyme responsible for synthesizing TXA2, a potent platelet 

aggregating important in thrombotic events [1]. Virtual screening (VS) using molecular docking is a 

helpful tool for identifying putative inhibitors for several targets through scoring functions to predict the 

ligand-protein binding affinity [2]. In this context, machine learning (ML) algorithms enable obtaining 

classification models to improve the ranking of potential compounds by molecular docking [3,4]. In this 

work, we present a study to identify potential TXAS inhibitors using a combination of in silico and 

machine learning approaches in the database of FDA-approved drugs. 

 

Material and Methods 

This study used a machine learning classification model based on molecular docking and the 

physicochemical properties of ligands validated in our previous work [5] (Figure 1). We took 2736 

FDA-approved drugs from ZINC catalogs (https://zinc.docking.org/) and generated their 3D structures 

using Open Babel software. We performed a molecular docking study using the ChemPLP function of 

the GOLD program. The physicochemical descriptors were obtained using the DataWarrior software, 

and we performed the classification models using the KNIME software (https://www.knime.com/). The 

datasets were normalized, and descriptors were filtered by linear correlation to be applied in the ML 

model with the XGBoost algorithm. The ML model was used in the VS of FDA-approved drugs to 

search for potential TXAS inhibitors. Three drugs were selected for in vitro evaluation of inhibition of 

arachidonic acid (AA)-induced aggregation in human platelet-rich plasma [6]. 

 

Figure 1. Machine learning-based virtual screening to identify potential TXAS inhibitors from FDA-

approved drugs. 

 

 

Results and Discussion 

The ML classification model predicted 85 drugs from the FDA dataset as TXAS inhibitor. The 

prediction for all compounds was considered reliable by calculating the applicability domain of the 
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model in KNIME. The fluoroquinolone-derived antimicrobial gatifloxacin (GFX) showed the best 

performance with an 86% probability of being a TXAS inhibitor (P=0.86). The drugs selected for in 

vitro platelet aggregation inhibition assay induced by AA were gatifloxacin (GFX, P=0.86), acemetacin 

(ACM, P=0.65), and dexlansoprazol (DLS, P=0.60). Figure 2 presents the results of antiplatelet activity 

of these drugs in concentrations of 100 and 500 μM, and also ACM in 1 mM. A significant antiplatelet 

effect was observed through maximum aggregation values of GFX 500 μM (8.3%± 5.4) (Fig.2B) and 

ACM 1mM (11.4% ± 4.1) (Fig.2C). Concentrations of 1mM of the drugs DLS and GFX were also 

measured, without verifying an increase in the inhibitory profile. We observed a wide range of IC50 

values for the drugs tested: GFX (IC50=352 μM ± 11.0), ACM (IC50=680 μM ± 6.1), and DLS (IC50 

≥1mM). These findings corroborate predictions of the ML model that show 

the greater potential of GFX for TXAS inhibition and the consequent 

antiplatelet action. Even though this drug cannot be repositioned as an 

antiplatelet, these results help to understand possible adverse effects or 

drug interactions.  
 

Figure 2. The effects of drugs on platelet aggregation induced bu AA. Dexlansoprasol (100 and 500 µM 

(A), gatiflaxacin (100 and 500 µM) (B), and acemethacin (100 µM, 500 µM, and 1 µM) (C). DMSO 

(dimethyl sulfoxide). *p <0,05 (Tukey).  

 

 

Conclusion 

We use machine learning classification models based on molecular docking and physicochemical 

properties of ligands for virtual screening to identify potential TXAS inhibitors from FDA-approved 

drugs. Three drugs with a good prediction for TXAS inhibition in an ML model were tested in vitro for 

antiplatelet activity. They showed similar results compared to the in silico,  in which Gatifloxacin 

presented a higher potential for inhibition of TXAS and a higher antiplatelet activity. These results can 

help understand possible adverse effects or drug interactions that affect the coagulation system. 
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